Разговор о логических парадоксах стоит начать с небольшой истории, которую Сервантес рассказывает в своей книге «Дон Кихот». В одном месте в «Дон Кихоте» он оставляет Санчо Пансу губернатором на острове Баратария, и, пока он на посту губернатора, «подданные» его дурачат. Однажды утром его разбудили и сказали: «До завтрака вам нужно рассудить одно дело». А в Испании в то время было много бродяг, так что с людьми нужно было быть очень осторожным. И вот у одного помещика по землям протекает река, через которую переброшен мост, и, чтобы убедиться, что все прохожие заслуживают доверия, этот помещик поставил около моста виселицы и стражника, который требует у каждого прохожего объяснить, куда и зачем он идет. Если прохожий говорит правду, ему разрешается перейти через мост, а если он лжет, то его ждет виселица. И все было хорошо, это помогало различить, кто бродяга, а кто торговец, пока однажды не пришел человек, который сказал: «Моя цель — быть повешенным на этой виселице, и ничего более». И стражника это поразило, потому что он подумал: «Хорошо, если мы его повесим, получится, что он сказал правду, тогда нам надо было его пропустить, но если мы его пропустим, то получится, что он солгал, тогда нам надо было его повесить». «Итак, Санчо Панса, как нам рассудить это дело?» И у Санчо Пансы какое-то время уходит на то, чтобы оценить парадокс, но в итоге он выносит свое решение: повесить ту половину человека, которая солгала, и пропустить ту половину, которая сказала правду.

Это все звучит как развлечение для ума, но для людей, которые хотят разобраться в вопросах истины, аргументации, языка и так далее, это указывает на что-то очень тревожное в природе языка. Кажется, очень просто попасть в парадокс: мы просто не знаем, было ли высказывание того человека правдой или нет, солгал ли он или нет. И это отсылает нас к первоначальному парадоксу лжеца, сформулированному Евбулидом в IV веке до нашей эры. Он возвел его до произведения искусства, он сказал: «Подумайте о высказывании „Я лгу“». Если я говорю: «Я лгу», я, конечно, могу иметь в виду какое-то другое свое высказывание, но если использовать предельно аккуратные формулировки, то можно сказать: «Нет, я лгу в той самой фразе, которую я говорю сейчас, это мое высказывание ложно». И снова, если вы подумаете, вы скажете: «Если бы это была истина, значит, раз он говорит, что его высказывание ложно, следует, что оно должно быть ложным, а не истинным, то есть оно не может быть истинным — оно должно быть ложным. Но если оно ложно, так как в нем говорится, что оно ложно, что он лгал — оно должно быть истинным». Так что мы получаем парадокс, изящно заключенный в одном предложении.

Рекомендуем по этой теме:
17178
Парадокс лжеца

Таких парадоксов очень много, и легко понять, почему они называются логическими парадоксами: противоречие, содержащееся в них, вскрывается при помощи логики. Некоторые слышали об Эпимениде: он был уроженцем Крита, и он был настолько разочарован в способности своих соотечественников говорить правду, что однажды сказал: «Все критяне — лжецы». Если он был прав, если действительно все критяне были лжецами или другие критяне всегда лгали, тогда его собственное высказывание должно быть парадоксальным. Ведь если он говорит: «Все критяне — лжецы», то он говорит, что и его собственное высказывание ложно, но в таком случае действительно все до единого критяне были бы лжецами, а значит, он говорил правду, когда сказал, что все критяне — лжецы. Выход из парадокса, разумеется, в том, что если бы некоторые критяне говорили правду, то его высказывание было бы просто-напросто ложным, а не парадоксальным.

Итак, у нас есть огромное количество таких парадоксов. Вот один парадокс, который мне особенно нравится: возьмем карточку, на одной стороне которой написано: «Высказывание на обратной стороне этой карточки истинно». Вы ее переворачиваете, а там написано: «Высказывание на обратной стороне этой карточки ложно». И если подумать, это просто парадоксально, потому что если высказывание на первой стороне истинно, то, значит, высказывание на обратной стороне тоже истинно, потому что об этом говорит первое высказывание; но на второй стороне написано, что первое высказывание ложно, то есть, если первое высказывание истинно, оно в то же время ложно. Но это невозможно, значит, второе высказывание должно быть ложным; но в нем написано, что первое высказывание ложно, тогда первое высказывание не может быть ложным — оно должно быть истинным. Но мы уже видели, что если первое высказывание истинно, то оно ложно, так что мы получаем чистый парадокс.

Некоторые средневековые мыслители предпочитали описывать этот парадокс через Сократа и Платона или иногда Платона и Аристотеля. Итак, Платон был учителем Аристотеля и считал его своим лучшим учеником, так что однажды он сказал: «Все, что говорит Аристотель, — истина». Но Аристотель был не самым примерным учеником в том смысле, что он хотел оспорить учение Платона, так что он сказал: «Все, что говорит Платон, ложно», и это очень похоже на парадокс с карточкой.

Все это были парадоксы в области правды, лжи и языка. Но в XX веке мы столкнулись с парадоксами в математике. Краткая история вопроса такова: после появления математического анализа, а затем после работы с бесконечными рядами в XVIII веке основы математики оказались неустойчивы, люди задавались вопросом «Как бесконечные ряды работают, не приводя нас к противоречиям в математике?». И в XIX веке развернулось большое движение, целью которого был поиск устойчивых основ математики. Тогда такой основой стала теория множеств. Множество — это совокупность объектов, определяемых через какое-то свойство: например, может быть множество всех натуральных чисел, множество четных чисел или даже множество рисовых пудингов — можно брать разные множества. В математике, конечно же, используются только числовые множества.

И все это выглядело прекрасно до конца XIX века. Фреге, Дедекинд и многие другие мыслители установили математику или то, что казалось твердым основанием теории множеств. Но потом Бертран Рассел, знаменитый британский философ, читая работы Фреге, подумал: «Можно задать множество чисел, можно задать множество множеств; можно задать множество множеств, включающих самих себя, а можно задать множество множеств, не включающих самих себя». А потом он подумал: «Подождите-ка, а если у нас есть множество множеств, не включающих самих себя, это множество будет включать себя или нет?» Если бы такое множество включало само себя, тогда оно не должно включать само себя, ведь по условию мы берем только те множества, которые не включают сами себя. Так что лучше бы это множество не включало само себя, но если оно не включает само себя, тогда оно является множеством, не включающим самого себя, и оно должно быть частью этого множества. И, как я уже говорил, все эти парадоксы поначалу выглядят как развлечение для ума, но теперь, в начале XX века, мы нашли парадокс, противоречие в самом сердце того, что должно быть основами математики. Как широко известно, это был большой удар для Фреге: он вот-вот должен был выпустить второй том своей работы «Основные законы арифметики», и ему пришлось добавить приложение, в котором он писал: «Бертран Рассел указал на слабое место в самом сердце моей теории, но, думаю, я могу решить эту проблему», и он предложил решение, но, как оказалось, оно не было корректным.

Рекомендуем по этой теме:
16863
Математика и интуиция

Я обращусь еще ненадолго к парадоксам в теории множеств, потому что есть еще один довольно занимательный парадокс, который возвращает нас к разговору о парадоксах, связанных с истиной, или так называемых семантических парадоксах. Итак, спустя примерно 40 лет, около 1940 года, американский математик и логик Хаскелл Б. Карри обдумывал парадокс Рассела и сказал: «В основе парадокса Рассела лежит отрицание — он говорит о множестве множеств, не включающих себя». Можно ли получить такой же парадокс, не используя отрицание? Есть ли способ? И он сказал, что способ есть. Возьмем множество всех множеств; если они включают себя, то ноль равен единице. По теории множеств это вполне допустимое множество. Но если мы начнем рассматривать такое множество, если оно будет включать себя, то оно будет удовлетворять условию, что если оно включает само себя, то ноль равен единице.

А мы предположили, что оно включает само себя, следовательно, ноль действительно равен единице. Но вполне очевидно, что ноль не может быть равен единице, так что мы отыгрываем все назад и предполагаем, что множество не может включать само себя. Если оно не включает само себя, незамедлительно следует, что-либо оно не включает само себя, либо ноль равен единице. Но это то же самое, что сказать, что если оно включает себя, ноль действительно равен единице — это то же самое, что сказать: либо оно не включает себя, либо ноль равен единице. А это все равно что сказать, что если множество включает себя, то оно не является не включающим самого себя, тогда ноль равен единице. Но тогда оно включает себя, то есть мы доказали, что оно включает само себя, но, раз мы это доказали, следовательно, ноль равен единице. Спасите! Мы только что доказали, что ноль равен единице! Так что у нас прямо в сердце математики снова появился настоящий кошмарный парадокс.

И спустя несколько лет этот парадокс был превращен в один из семантических парадоксов, о которых я говорил ранее, и он получил форму высказывания: «Если это высказывание истинно, следовательно, ноль равен единице». Или даже: «Если это высказывание истинно, то Бог существует». И тогда мы всего в несколько строк можем доказать, что Бог существует или что угодно еще: ноль равен единице, Бог существует, сегодня в Москве идет дождь — мы можем доказать что угодно с таким высказыванием. Люди очень много размышляют о правде, так что это очень опасно: неужели правда действительно такова? Неужели правда — противоречивое понятие?

И я закончу тем, что коротко расскажу об еще одном парадоксе, чтобы показать, что парадоксы всем этим не ограничиваются. Вот высказывание: «Вы не знаете этого утверждения» — вы не знаете того самого утверждения, которое я сейчас произношу. Теперь предположим, что вы его знаете. Понятия знания и истины говорят нам, что вы можете знать только то, что истинно, так что, если вы его знаете, оно истинно, в случае чего вы не знаете его, потому что в нем так говорится. Так что если предположить, что вы его знаете, то выходит, что вы его не знаете. Получается, что мы доказали, что вы его не знаете, но в нем сказано, что вы его не знаете, так что мы его доказали. И конечно же, если мы что-то доказали, значит, это истинно, значит, мы это знаем, ведь у нас есть доказательство. И получается, что мы доказали и то, что вы знаете это утверждение, и то, что вы его не знаете, так что у нас снова получается эпистемический парадокс.

Подведем итоги. Я описал несколько семантических парадоксов, в основном связанных с концепцией истины, а также показал, что они очень похожи на парадоксы, связанные с теорией множеств, лежащие в самом сердце математики. Кроме того, мы познакомились с эпистемическими парадоксами, которые связаны не только с понятием истины, но и с понятием знания. Итак, мы разобрали несколько семантических парадоксов, таких как парадокс лжеца, парадокс Эпименида и парадокс с карточкой, которые основываются на понятии правды (в них мы говорим о лжи, неправде, истине и так далее), а затем мы разобрали несколько парадоксов, которые возникают в математике, — они связаны с теорией множеств. И в конце мы поговорили также о еще одном типе парадоксов — эпистемических парадоксах.

Рекомендуем по этой теме:
6770
Философия экономики

Сразу можно понять, насколько важно для нас найти решение этих парадоксов, раз в них замешана математика, ведь мы искали прочные основы математики, чтобы убедиться, что мы не делаем ошибок — а теперь мы обнаружили в них противоречие. Так что нам действительно нужно решение, когда речь заходит о математических парадоксах, связанных с теорией множеств, но и для семантических парадоксов оно нам тоже нужно. Над понятием правды размышляет очень много философов, и они хотят понять природу истины, что такое истинное высказывание. Естественно предположить, что высказывание истинно, если все обстоит так, как оно говорит; а теперь посмотрите на парадокс лжеца: это истинно, если я лгу — это же парадоксально и ведет к противоречию. Так что нам нужно переосмыслить понятие истины, некоторые хотят переосмыслить логику, лежащую в его основе, и методы доказательств, которые привели нас к противоречию. И очень важно, чтобы мы это сделали, если мы хотим получить полное понимание понятий истины и знания.

Источник: Serious Science