Совместно с издательством «Альпина нон-фикшн» мы публикуем отрывок книги популяризатора науки Карла Циммера «Она смеется, как мать. Могущество и причуды наследственности», рассказывающей о способах передачи наследственной информации.

По всей видимости, жизнь появилась, как только первые, простые химические вещества начали усложняться[]См.: Adami 2015; Baross and Martin 2015; Joyce 2012; Kun et al. 2015; Pressman, Blanco, and Chen 2015; Sojo et al. 2016; Szostak, Wasik, and Blazewicz 2016. На самых ранних этапах существования Земли на ней уже были аминокислоты, азотистые основания и другие молекулярные кирпичики. Состоящие из этих компонентов короткие цепочки скопились рядышком, возможно, на дне моря они были окружены пленочкой липидов или заперты в пузырьки, похожие на клетки. В этих замкнутых пространствах химические процессы ускорились настолько, что смогли преодолеть барьер, отделяющий живое от неживого. 

Скорее всего, первые живые организмы были непохожи на те, что мы видим сейчас. В наше время животные, растения, бактерии — т. е. все клеточные формы жизни — хранят свою генетическую информацию в виде ДНК. Однако ДНК не самый лучший кандидат на роль первой молекулы наследственности, так как она слишком беспомощна и требовательна. 

Чтобы клетка могла считывать хранящуюся в ДНК информацию, ей необходимы множество белков и РНК. Когда клетка делится, армия других молекул создает копию ее ДНК. Едва появившаяся на Земле жизнь должна была быть устроена проще. 

По одной из версий, жизнь начиналась без ДНК и белков. Она полагалась только на молекулы РНК. Первичная клетка могла содержать несколько разных типов коротких РНК, которые помогали копировать друг друга. 

Эксперименты, проведенные с РНК, показывают, как это могло происходить. Одна молекула РНК способна захватывать азотистые основания и соединять их вместе, используя вторую молекулу РНК как образец. Вторая молекула может делать то же самое по отношению к третьей. Если последняя в этом ряду РНК помогает копировать первую, то круг замыкается. У таких древних РНК два типа наследственных признаков: от предков они получают собственно генетическую информацию, а также определенную форму, которая позволяет им создавать новые молекулы. 

Такая первая наследственность была довольно неточной. Иногда новые молекулы РНК содержали некоторые отличия от образца. Часто эта ошибка оказывалась фатальной, поскольку нарушалась способность молекулы РНК создавать свои копии. Но в некоторых случаях эти изменения ускоряли происходящие химические процессы. Клетки, которые размножались быстрее, обгоняли своих медлительных соперников. 

Жизнь на основе РНК могла существовать в океане или приливно-отливной зоне, там же могли находиться и свободные аминокислоты. По мере того как РНК эволюционировала, она принимала все более сложные формы, и некоторые из этих структур, возможно, начали соединять аминокислоты в короткие цепочки, которые мы сейчас называем пептидами. Пептиды могли выполнять работу внутри клеток. Со временем короткие пептиды превратились в крупные, сложноустроенные белки.

Кроме того, основанная на РНК жизнь могла в процессе эволюции создать также и молекулу ДНК. Двухцепочечная молекула ДНК более стабильна, чем одноцепочечная РНК, и менее подвержена повреждениям. Когда первые организмы с ДНК копировали свои гены, они допускали меньше ошибок. Такая новообретенная точность могла способствовать созданию более сложных форм, поскольку снизился риск летальных мутаций.
 
Как только жизнь, основанная на ДНК, укрепилась, она заполнила всю планету. Примерно 3,5 млрд лет назад микроорганизмы разделились на две эволюционные ветви: бактерии и археи. Их почти невозможно отличить друг от друга под микроскопом, но у них есть очень важные различия в биохимических процессах. Например, бактерии и археи используют разные молекулы для построения клеточных стенок и разные молекулы для работы с генами. 

Однако обе эти линии микроорганизмов оказались удивительно гибки, приспособившись жить в каждом уголке земли, где есть вода и энергия. Микроорганизмы адаптировались для жизни на поверхности океана, где они улавливают солнечный свет, на морском дне, где потребляют серу и железо, глубоко в земле, где используют энергию радиоактивного распада… По оценкам ученых, на Земле проживает около миллиона миллиардов миллиардов микроорганизмов, которые образуют триллион разных видов[]Locey and Lennon 2016. И ни у кого из них не соблюдается закон Менделя. 

Типичный микроорганизм, скажем, кишечная палочка (Escherichia coli), обитающая в вашем кишечнике, имеет только одну хромосому: длинную кольцевую молекулу ДНК. На ней расположено несколько тысяч генов. Если E. coli может получать глюкозу или другой сахар из вашего завтрака, она может и расти, пока не будет готова к делению. Тогда кольцевая ДНК изящно расплетается на две нити. На каждой из них строится вторая, в итоге создаются две почти идентичные хромосомы. Затем клетка делится надвое. Она растаскивает обе хромосомы по своим противоположным сторонам, а затем посередине выстраивает стенку. Каждая новая кишечная палочка оказывается почти идеальной копией своего родителя и наследует одну хромосому, а также около половины молекул родительской клетки. 

Мы, люди, имеем возможность познакомиться со своими родителями. Микроорганизмам такого шанса никогда не представится, потому что их родители исчезают, или же, говоря другими словами, разделяются на дочерние клетки. Законы Менделя описывают, как наследственные факторы от двух родителей объединяются при образовании потомка. Для микроорганизмов это бессмысленно. 

Их наследственность отличается от нашей в еще одном важном аспекте. Микроорганизмы способны получать гены разными способами. Они могут унаследовать копию генов от своих предков, так же как это делаем мы. Это называется вертикальной передачей. Кроме того, они в состоянии получать гены от других, неродственных микроорганизмов — благодаря горизонтальному переносу генов[]Daubin and Szöllősi 2016.

Рекомендуем по этой теме:

Именно благодаря горизонтальному переносу генов стало возможным определить, из чего они сделаны. В 1920-х гг. исследователи выяснили, что если убить опасный штамм бактерий и смешать его с безвредным, то безвредный трансформируется в опасный. Более того, когда трансформированные бактерии делились, их потомки сохраняли опасные свойства. Позже микробиолог Освальд Эвери с коллегами занялся поиском этого таинственного «трансформирующего агента» и выделил из бактериальных клеток разные виды молекул. Проведя многочисленные эксперименты, он пришел к выводу, что вещество, которое он искал, — это ДНК. 

Оказалось, что бактерии из опыта Эвери поглощали свободную ДНК извне, встраивали ее в свою хромосому и таким образом трансформировались. Они получали гены, которые могли использовать, чтобы вызывать заболеваниеу хозяина. Дальнейшие исследования выявили, что горизонтальное наследование происходит и другими способами. Некоторые бактерии помимо своей основной хромосомы несут маленькие колечки ДНК, называемые плазмидами. У тех есть свои собственные гены. Бактерии могут иногда прикрепляться к другим бактериям и создавать трубки для передачи плазмид. Такая плазмида может свободно плавать в цитоплазме нового владельца, а может встраиваться в его хромосому. 

Горизонтальный перенос генов, наверное, кажется удивительным, но он происходит вокруг нас. И даже внутри нас. В эксперименте 2004 г., проведенном группой датских исследователей, было показано, как бактерия Enterococcus faecium использует горизонтальный перенос в наших собственных организмах[]Lester et al. 2006. За несколько тысяч лет эта бактерия эволюционировала в разные штаммы; некоторые заселяют кишечник и кожу человека, а другие выбирают местом жительства иных животных. Большинство штаммов этого энтерококка безвредны, но есть такие, которые вызывают смертельные инфекции в крови и мочевом пузыре. 

Обычно подобную инфекцию лечат антибиотиками. Было время, когда этот подход работал. Но уже в начале 2000-х гг. E. faecium превратился во врачебный кошмар. Все чаще доктора стали замечать, что бактерии несут гены, защищающие их от лекарств. Когда к пациенту попадал такой устойчивый штамм, бактерии бесконтрольно размножались, передавая ген устойчивости вертикально своим потомкам. 

В 2004 г. полдюжины смельчаков согласились выпить молоко из двух чашек. В первой был миллиард Enterococcus faecium. Эти бактерии были выделены из человека, и их можно было легко убить с помощью антибиотика ванкомицина. Через три часа шестеро добровольцев выпили и вторую чашку, где находился еще один миллиард E. faecium, полученных из кур. У этих бактерий были гены, делающие их устойчивыми к ванкомицину. 

Питье молока было частью эксперимента, проводимого Датским национальным центром по контролю инфекций и антимикробных препаратов. В течение следующего месяца ученые брали на анализ стул шести испытуемых и исследовали его на наличие двух штаммов E. faecium. Куриный штамм быстро поредел и через несколько дней исчез. Человеческий же, лучше приспособленный к новому хозяину, сохранялся дольше. 

Однако у трех из шести испытуемых ученые заметили изменения в человеческом штамме. У бактерий из поколения в поколение передавался новый ген, которого не было в начале эксперимента. Они унаследовали от куриного штамма ген устойчивости к ванкомицину. 

Микроорганизмы могут горизонтально принимать гены даже от своих злейших врагов — вирусов. Вирусы — это гены, окруженные белковой оболочкой, и у них особая форма наследственности, не такая как у клеток. Вирус не воспроизводится сам, копируя свои гены, и не делится на два. Вместо этого он внедряется в клетку-хозяина. Например, бактериофаги — вирусы, атакующие бактерий, обычно прикрепляются к клеточной стенке хозяина и впрыскивают внутрь нить ДНК, как будто выдавливают из шприца спагетти. У бактерий есть несколько способов распознать и уничтожить вирусную ДНК. Но ни один из них не идеален. Если вирусные гены выживают в клетке, они начинают ею командовать. Бактерия делает белки по инструкции, записанной в вирусных генах. Эти белки заставляют клетку создавать новые вирусы, комплектуя их новыми копиями вирусных генов. 

Когда речь заходит о вирусах, наследственность становится почти абстракцией. У них нет никаких материальных основ, связующих их с предками, поскольку каждый атом, входящий в новую вирусную частицу, происходит из хозяйской клетки, которая изготавливает вирусы. Для них наследственность — это невидимая ниточка информации, связывающая вирус с его потомками. 

Когда гены упаковываются в новые вирусы, иной раз происходит сбой. Внутрь вирусной оболочки может попасть ген от бактерии-хозяина. Такой новый вирус, покидая бактерию, будет нести ее ген вместе со своими, и впоследствии он способен проникнуть в нового хозяина. Иногда эти бактериальные гены встраиваются в хромосому этого нового хозяина. Таким образом вирусы могут выступать в роли стихийных транспортных средств, перенося гены бактерий от одной клетки к другой, а случается даже, что и между разными видами.