Слуховая информация проходит в наш головной мозг по восьмому нерву, и восьмой нерв, вестибуло-слуховой, входит в наш головной мозг на границе продолговатого мозга и моста. Это свидетельствует о том, что данная система очень древняя. На границе продолговатого мозга и моста находятся ядра восьмого нерва, которые делятся на вестибулярные и слуховые. Причем ближе к краям мозга находятся слуховые ядра, а ближе к середине — вестибулярные. Это указывает на то, что в ходе эволюции сначала появилась вестибулярная система, а только потом слуховая.

Соответственно, на слуховые ядра, которые находятся на границе продолговатого мозга и моста, поточечно передается информация от рецепторов улитки. Волосковые рецепторы, которые в улитке (их примерно 30 тысяч), передают каждый по своему каналу информацию об определенной тональности. Это называется тонотопической передачей слуховых сигналов в продолговатый мозг и мост. Внутри этих слуховых ядер возникает карта базилярной мембраны, карта улитки. Она имеет С-образную форму. Сначала идут нейроны, реагирующие на 30 герц, на 35, на 40, на 400, на 4000. Так мы доходим, скажем, до 10–15 и более тысяч герц. То есть идет частотно-амплитудный анализ звукового сигнала.

Рекомендуем по этой теме:
21327
Гетерохромия

В продолговатом мозге и на мосту те слуховые ядра, которые функционируют, в основном занимаются сравнением сигнала от правого и левого уха. Два уха у нас не просто так. Три, пожалуй, было бы слишком много: вычислительный ресурс нашего мозга ограничен, и двух «микрофонов» достаточно. А одного слишком мало, потому что нам важно знать, откуда идет сигнал. Два уха позволяют это рассчитать. Если сигнал идет справа, то до правого уха он доходит раньше и чуть громче. И эта небольшая разница позволяет рассчитать направление источника сигнала, что имеет огромное биологическое значение, особенно если вы, например, ночью передвигаетесь по незнакомой местности, а слуховая система должна реагировать на все хрусты, шорохи, всплески и так далее. Точность определения достигает двух-трех градусов, то есть в принципе система работает очень здорово.

У дельфинов или летучих мышей именно на основе слуховых ядер продолговатого мозга и моста (их еще называют слуховыми ядрами ромбовидной ямки) возникает система эхолокации. Они уже не просто слышат звук и анализируют, откуда он пришел, а активно издают звук, звуковые щелчки и ловят их отражения и изменения параметров этого отражающегося звука. Дельфин может на расстоянии 10 метров отличить, скажем, мячик диаметром 10 сантиметров от такого же кубика — настолько точно работает система эхолокации. Более того, появляется так называемый Доплер-эффект, который позволяет оценивать удаление или приближение объекта. То есть Доплер-эффект — это ситуация, когда отраженные волны меняют свою частоту в зависимости от того, как движется такая анализируемая конструкция. Если, например, объект от вас удаляется, то волны, отражающиеся от него, приходят с чуть более низкой частотой. Если объект к вам приближается, то волны, которые от него отражаются, приходят с чуть более высокой частотой. Дельфины и летучие мыши способны все это анализировать, улавливать. Это потрясающая сенсорная система. Мы ее лишены, но человек придумывает технические средства, которые заменяют эхолокацию, в частности локаторы, которые используются в авиации, водном транспорте или так далее.

Итак, сигнал проходит через продолговатый мозг и мост, на выходе он перекрещивается, дальше правое полушарие будет работать с сигналами от левого уха, а левое — с сигналами от правого уха (этот перекрест называется латеральной петлей), и информация идет в средний мозг и таламус. В среднем мозге слуховыми сигналами занимаются нижние холмики четверохолмия. Как и во всем четверохолмии, главная задача здесь — реакция на новые сигналы. Этим занимаются нейроны детектора новизны, все время сравнивающие тот сигнал, который сейчас, и сигнал, который был, скажем, на 0,1–0,2 секунды ранее. Результат этого сравнения позволяет запускать так называемый ориентировочный рефлекс. Изменение громкости, направления звука или сам факт его появления активируют нейроны детектора новизны, и мы поворачиваемся в сторону некоего нового события. Это очень важно, это любопытство на самом древнем его уровне. Это позволяет собирать информацию о неких изменениях во внешнем мире, потому что именно они очень важны. У животных эта система управляет движением ушных раковин. У нас уши особо не шевелятся, поэтому обезьяны и человек крутят головой, хотя ушные раковины, между прочим, все равно нам нужны, например, в ситуации, когда звук идет ровно спереди или ровно сзади. В этих двух ситуациях с точки зрения правого и левого уха звук приходит с одинаковой громкостью, с одинаковой скоростью, но наши слегка оттопыренные уши немного модулируют тот сигнал, который приходит сзади, и мозг умеет различать сигналы, идущие прямо на нас, и сигналы, исходящие со спины.

Итак, средний мозг запускает ориентировочный рефлекс, поворот глаз, головы, а если нужно, то и всего тела в сторону нового сигнала. Для этого есть специальный тектоспинальный тракт, который работает со спинным мозгом и влияет на мышцы туловища. А основной поток идет в таламус. В задней части таламуса находится зона, называющаяся медиальное коленчатое тело. Там происходит подготовка слуховой информации для передачи в кору больших полушарий, где находятся основные слуховые центры. Медиальное коленчатое тело, как обычно это делает таламус, контрастирует поднимающийся сигнал. Что в данном случае обозначает контрастирование? Для слуховой системы контрастирование — это фактически подчеркивание пиков на спектре звука. Когда мы слышим некий звуковой сигнал — скрип двери, плеск воды, голос человека, — то это, как правило, смесь многих частотных составляющих. И если мы построим спектр, то на этом спектре будет несколько вершин и несколько впадин между этими вершинами. И для того, чтобы в дальнейшем детектировать слуховой образ, очень важно, чтобы вершины были в явном виде подчеркнуты. Нужно сделать вершины повыше, а впадинки пониже, улучшить соотношение «сигнал — шум». Этим занимается таламус. После того как слуховой сигнал пройдет через таламический фильтр, а там находятся слои возбуждающих, тормозных нейронов, выделение пиков на спектре звука оказывается более легким, и кора это будет делать уже с меньшим напряжением.

Рекомендуем по этой теме:
39159
Музыкальные способности

Кроме того, таламус способен ограничивать частотные диапазоны: при помощи таламуса мы можем прислушаться, например, только к низким звукам или только к высоким. Представьте: играет симфонический оркестр, вы можете слушать только скрипичные или только духовые инструменты. Это и есть функция таламуса. Или, например, вокруг вас говорит несколько человек, и вы хотите настроиться на голос соседки справа. Это тоже таламическая функция — работать только с определенным частотным диапазоном и подтормаживать те диапазоны, которые в данный момент мешают и являются, по сути дела, шумом.

После таламуса слуховая информация поднимается в кору больших полушарий. Слуховая кора — это наша височная доля, и внутри нее выделяют первичную, вторичную и третичную слуховую кору. Первичная слуховая кора располагается прямо по краю боковой борозды. Височная доля отделяется от теменной боковой бороздой, очень глубокой. Внутри борозды находятся вкусовые центры, вестибулярные центры. А на том крае, который повернут в сторону височной доли, находится первичная слуховая кора. И в ней мы видим детальную тонотопическую карту. Нервные клетки, которые расположены в первичной слуховой коре, вытянуты в линию, и каждая клетка, каждая группа клеток занимается своей частотой, своей тональностью. Те клетки, которые ближе всего к носу, реагируют на самые низкие частоты, а те, которые ближе всего к затылку, — на самые высокие частоты, и точность различения здесь очень высока. Можно обнаружить нейроны, которые реагируют, скажем, на 100 герц, 101 герц или на 102 герца, то есть очень точно различаются разные тональности.

Это и лежит в основе нашего восприятия сложных слуховых, речевых и музыкальных образов. То, что называют абсолютным музыкальным слухом, нередко связывают именно с врожденно установленными свойствами первичной слуховой коры. Если она у вас в принципе очень хорошо различает звуковые частоты, значит, вам дорога в музыкальную школу, а если еще будете трудиться, то, может, станете лауреатом конкурса имени Чайковского. А если ваша первичная слуховая кора работает так себе, то, конечно, вам тоже стоит пойти в музыкальную школу, вы ее даже окончите, может быть, даже с пятеркой, но, к сожалению, лауреатом конкурса имени Чайковского, скорее всего, не станете. Потому что мы так устроены, что для того, чтобы достичь серьезных высот в каких-то областях, нужно, чтобы и генетически наш организм был к этому предрасположен, а еще работать, работать и работать. Поэтому очень важно знать, в каком месте копать, и только тогда вы достигнете по-настоящему выдающихся результатов.

Итак, первичная слуховая кора отвечает за различение тональностей. Ниже от нее находится вторичная слуховая кора, где начинается опознавание слуховых образов. Слуховой образ — это совокупность разных тональностей, когда там есть сигнал условно 100 герц, и еще 200 герц, и еще 500 герц, а мы все это осознаем как некий музыкальный аккорд. По такому же принципу осознается и опознается то, что мы относим к звукам природы: плеск воды, шум ветра. Всему этому мы обучаемся. Узнавание слуховых образов как суммы тональностей — это уже результат обучения, результат настройки наших нейросетей. В детстве нам говорят, что собачка лает, кошечка мяукает, а вот это скрипит дверь, а вот это дует ветер и так далее. Мы учимся различать почти все слуховые образы. Хотя известно, что есть такие слуховые образы, которые наша вторичная слуховая кора узнает все-таки врожденно, — это так называемая видоспецифическая коммуникация. Речь идет о звуках, которые обозначают базовые эмоции: смех, плач, крик боли. Их наша слуховая кора умеет узнавать врожденно. И это можно показать, работая со слуховой корой младенца. Есть даже технологии, которые позволяют понять, как работает слуховая кора еще не рожденного ребенка. В утробе мамы ребенок уже в восемь месяцев довольно неплохо слышит, и идея поговорить с ним о чем-то, чтобы он настроился на мамин или папин голос, на стук маминого сердца, очень позитивная.

Рекомендуем по этой теме:
60051
5 мифов о мозге

Итак, вторичная слуховая кора узнает простые слуховые образы как сумму тональностей. Если мы пойдем по височной доле назад, в сторону затылочной доли, мы попадем в третичную слуховую кору, которая опознает сложные слуховые образы. Сложный слуховой образ — это не просто сумма тональностей, а это уже так называемое соотношение тональностей. С помощью этой системы мы узнаем слова, узнаем музыку, музыкальную мелодию. В чем здесь проблема? Мы должны узнать мелодию — неважно, сыграли ее на скрипке или на контрабасе. Мы должны узнать слово «вода», и неважно, сказано это слово мужским голосом или женским. Поэтому в данном случае имеет значение уже не спектр и не расположение конкретных вершин на этом спектре, а соотношение. В одной пропорции на этой кривой расположены данные вершины, и неважно, попала кривая в низкочастотную область — скажем, если мужской голос — или в высокочастотную. Задача различения звуковых спектров вне зависимости от конкретной тональности — это очень сложная вычислительная задача. На уровне компьютерного моделирования она решается с большим трудом, требует огромных вычислительных ресурсов. И эта одна из тех задач, которую наш мозг до сих пор выполняет не хуже, чем компьютеры.

Как известно, существует некоторое разделение функций между правым и левым полушарием с точки зрения выделения, опознавания сложных слуховых образов. И левое полушарие у правшей больше ориентировано на опознавание слов (это так называемая зона Вернике), а правое полушарие правшей больше ориентировано на узнавание музыкальных мелодий, на восприятие музыкальных образов.