Синтетическая биология

Сохранить в закладки
11315
7
Сохранить в закладки

Биоинженер Джеймс Коллинз о программировании живых клеток, биопленках и создании пробиотиков

Синтетическая биология — это новое направление науки, объединяющее инженеров, физиков, молекулярных биологов и химиков с целью использования инженерных принципов для соединения биомолекулярных компонентов: генов, белков и других составных частей в новые структуры и сети. Эти обновленные структуры предполагается использовать с целью перепрограммирования живых организмов, придавая им новые свойства, необходимые для решения задач в области здравоохранения, энергетической безопасности, производства продуктов питания и развития окружающей среды. Это междисциплинарное направление науки появилось благодаря интересу к геному человека. В середине 1990-х гг. проект «Геном человека» начал публиковать данные по частям геномов различных организмов. Ведущие ученые в данной области пришли к выводу, что следующей задачей будет определить, как эти части генома функционируют, взаимодействуют друг с другом и объединяются в сети и пути. Это может дать понимание того, как эти пути определяют биологические процессы и заболевания.

Основной проблемой данного исследования было отсутствие у нас необходимых данных и соответствующих технологий для так называемой обратной инженерии и воспроизводства структуры естественных сетей. Несмотря на это многие инженеры, в том числе я и мои коллеги по лаборатории, были чрезвычайно заинтересованы в работе в области геномики и молекулярной биологии. Но вместо того, чтобы разрабатывать методы обратной инженерии и воспроизводства структуры естественных сетей, мы подумали в манере обычной для инженеров, а именно: могли бы мы сами что-то построить, объединяя структуры, которые в данном случаи были «влажными», а не «сухими» в смысле, которые применяется в электроинженерии. Совместно с Тимом Гарднером, одним из моих студентов на тот момент, вводя этот подход мы основали новую сферу. Тогда мы сели и стали думать, могли бы мы создать инженерную схему, математически смоделировать ее, чтобы понять, как она будет функционировать, а далее найти частицы, которые будут биологическим эквивалентом компонентов электронной схемы. Далее, используя методы молекулярной биологии, чтобы собрать в единое целое частицы в плазмиды или ДНК, внедрить в клетку и посмотреть, будет ли эта конструкция работать как надо.

Тим и я разрабатывали разные подходы и составляли различные цепи в течение 9 месяцев, а далее мы решили сконцентрироваться на тумблер. Эта идея была мотивирована работой в области электронной инженерии, где есть тумблеры или переключатели. Тумблер в электронной инженерии — это форма памяти, очень простая цепь, которая имеет две позиции: 0 и 1, или состояния включено-выключено, переключаемых импульсом, например, электрическим импульсом или световым. Гаджеты, которыми мы постоянно пользуемся: iPhone, iPad, персональные компьютеры — состоят из миллионов, если не миллиардов, таких тумблеров. Мы с Тимом задались вопросом, как мы можем сделать подобную конструкцию в клетке, в бактерии? Итоговая схема, которую мы придумали, была крайне простой. У нас было 2 взаимосвязанных гена, организованных таким образом, что они оба стремились к «включенному» состоянию. Их поведение определяли так называемые конститутивные промоторы, играющие роль включателей для генов и являющиеся участками ДНК. Мы организовали их в цепь, протеин вырабатываемый для белка А стремится привязаться к тумблеру белка Б, выключая его. Белок, производимый геном Б, стремится привязаться к тумблеру гена А, выключая его. Таким образом каждый хочет быть включенным, и пытается выключить второй. Получилась взаимно тормозящая сеть.

В принципе, можно настроить эту цепь так, что она стремится существовать в одном из двух устойчивых состояний — либо состояние А (ген А включен, ген Б выключен), либо Б (Гена Б включен, ген А выключен). Также возможно менять состояние путем доставки химического стимула или изменения окружающей среды, который отключит активный ген. Допустим, цепь находится в состоянии А. Если вы могли бы ввести химическое вещество, которое бы временно инактивировало ген A или его белок, и обеспечили достаточное время пребывания там этого химического вещества, ген Б, который стремится быть включенным, но удерживается в выключенном состоянии активностью гена А, сможет произвести свой белок, и когда его концентрация станет достаточно высокой — выключит ген А, и вы сможете удалить из системы химическое вещество, которое деактивировало ген А. Таким образом можно менять положение цепи из состояния А в состояние Б и так далее. Это основной принцип работы.

Мы с Тимом начали работу в 1999 году с математического моделирования процесса, что позволило нам говорить о его потенциальной работоспособности. Затем подключился Чарльз Кантор, наш коллега из университета Бостона — биоинженер, он позволил нам работать в его лаборатории. Тим на тот момент достаточно разобрался в молекулярной биологии и генной инженерии, чтобы создать бактерию E. coli. Он создал несколько подобных бактерий, одна отвечала на воздействия со стороны двух разных химических веществ, а другая — на воздействия одного химического вещества и тепловой шок. Тим оказался настолько талантливым биоинженером, что в течение 9 месяцев смог активировать тумблероподобное поведение в квазистабильном состоянии внутри E. coli. Параллельно нашей работе над этой же проблемой работали Майк Эловитц и Стэн Либлер, которые создали репрессивную генераторную схему с тремя генами: ген А пытался выключить ген Б, ген Б пытался выключить ген С, а ген С — ген А. В принципе это кольцевой генератор, в котором должна быть мигающая схема. Майк и Стэн сконструировали свою схему также внутри бактерии E. Coli. Работы были опубликованы в январе 2000 г. в журнале «Nature» и положиле начало развитию сферы синтетической биологии.

Теперь можно представить, что можно создать цепь, обеспечивающую клетку памятью, и это вдохновило людей из области биопрограммирования. Они предположили, что возможно запрограммировать клетку, так же как цепь. И хотя был огромный интерес к биопрограммированию, думать об этой работе как о замене электронных цепей в наших компьютерах было бы неправильно. Правильнее думать о программировании клеток как о возможности присваивать клеткам разнообразные функции и задачи. И это основная тема синтетической биологии. Например, мы используем тумблеры для создания полноклеточных биосенсеров, что позволит запрограммировать организмы, давая им способность определять присутствие тяжелых металлов, таких как свинец, или опасных химикатов, вроде тех, что разрушают структуру ДНК, или патогенов. Можно было бы отпустить эти организмы в окружающую среду или запустить внутрь чьего-либо тела, или проверять с их помощью импортированные товары — присутствует ли в краске на импортной игрушке свинец; нет ли вспышки сибирской язвы в здании правительства? Прелесть тумблеров в том, что можно воспроизводить память, хранить информацию о событиях, чтобы проверить, были ли подобные случаи ранее.

Также мы уже использовали подобные включатели, основанные на РНК, что позволяет динамично включать и выключать несколько генов внутри клетки для реорганизации метаболического процесса. Теперь мы также работаем с несколькими биотехнологическими компаниями, чтобы определить, как можно использовать полученные нами результаты на практике, повысить эффективность использования созданных организмов. Например, превращать биомассу в энергетические ресурсы, топливо — включая, возможно, дизель, этанол, бутанол.

Так же очень интересно, как можно использовать методы синтетической биологии и программировать организмы для решения задач в области здравоохранения. Например, мы создали бактериофаг, который будет бороться с бактериальными биопленками. Биопленки — это колонии бактерий, прикрепленные к поверхности. Это налет на зубах, налет на раковине, налет на подводной части кораблей. Мы заинтересованы в борьбе с биопленками, так как бактерии внутри таких колоний в несколько раз более резистентны к антибиотикам, нежели одиночные бактерии. Когда проводят операции по трансплантации искусственных органов — костных вставок, сердечных клапанов, мозговых стимуляторов и т. д. основной риск не в проведении самой операции, а в потенциальном заражении биопленочной инфекцией. Мы приняли этот вызов и решили попытаться решить проблему с помощью бактериофагов. Бактериофаги — вирусы, атакующие исключительно бактерий, мы создаем их, чтобы внедрять в бактерий или бактериальные колонии. Они пройдут литическую фазу, создавая многочисленные копии себя, и запуская процессы, ведящие к нарушению цельности клетки, а затем миллионы дубликатов будут охотиться на другие бактерии. Основная сложность в том, что нельзя проникнуть под основной слой биопленки, так что мы создаем бактериофагов, которые смогу постепенно разрушать слои биопленки, выводя на поверхность все больше и больше бактерий. Таким способом мы смогли сделать процедуру борьбы с биопленками на 99,99% эффективнее по сравнению с существующими методами как на искусственных имплантах, так и на промышленных объектах.

Мой студент Тим Лу, который возглавлял исследования, совместно с другим студентом Майком Каррасом хотел найти данным разработкам коммерческое применение, начав с области здравоохранения. Но затем их заинтересовало использование технологии в промышленной области. Ведь на любых механизмах, долго подвергающихся воздействию влаги, появляются такие биопленки. Биопленки появляются на системах кондиционирования, трубопроводах, бумажных комбинатах. Тим и Майк начали создавать бактериофагов для борьбы с биопленками на промышленных объектах. Но в этой области возникли сложности и фокус их исследований сместился на поиск и распознавание патогенов в больницах и на пищевом производстве. Цель, которой они уже почти достигли — для подобной работы необходимо создать всего лишь 10 бактерий за период временнее менее часа, затратив на процедуру менее 10 долларов.

Мы не хотим останавливаться на достигнутом и стараемся искать другие пути применения наших технологий для борьбы с инфекционными заболеваниями. Теперь с финансовой поддержкой фонда Гейтса, мы создаем пробиотики, распознающие и борющиеся с разнообразными инфекциями. Например, мы разрабатываем лактобактерии для борьбы с инфекционной холерой. Мы создали их таким образом, чтобы они отвечали на два разных сигнала от возбудителя холеры и производили антимикробные пептиды специфичные для холеры. Прелесть данного решения в том, что лекарства от холеры очень дорогостоящие и могут быть достаточно токсичными. Теперь, по сути, можно добавить наш противохолерный организм в йогурт, чтобы противостоять всплеску холеры, такому, как был на Гаити после землетрясения, или запаковать этот организм в таблетку. Любой из двух способов будет гораздо более дешевым и менее токсичным, чем разработка лекарства. Единственная группа людей, которая испытают действие этого лекарства, будут те, кто подвергся воздействия со стороны холерных бактерий.

Я считаю, что в ближайшие десятилетия мы будем свидетелями того, как синтетическая биология меняет нашу жизнь в разнообразных областях: производстве энергии или продуктов питания, здравоохранении, или даже решении проблем с окружающей средой. Один из самых интригующих научных вопросов — это вопрос о том, как создаются естественные цепи и функционируют естественные процессы. Мы многому можем научится у естественных организмов, которые эволюционировали миллионы, а в некоторых случаях — миллиарды лет, создали функционирующие цепи и сети и выполняют довольно сложные задачи, иногда — в очень агрессивных средах. И я считаю, что синтетическая биология, хотя я концентрируюсь в основном на первичных способах применения, может быть очень полезна и в области фундаментальной науки, позволяя нам понять, как в общем функционируют организмы

Англоязычную версию видео сможно посмотреть по ссылке.

Над материалом работали

Читайте также

Внеси свой вклад в дело просвещения!
visa
master-card
illustration