Какие виды магнитных металлов существуют? В каких устройствах используются постоянные магниты? В чем уникальность ферромагнитных материалов? На эти и другие вопросы отвечает доктор технических наук Валентин Крапошин.

Физические свойства металлов, как и всех остальных веществ, конечно, определяются взаимодействием атомов между собой. Сразу нужно определить, что такое физические свойства. Для материаловедов свойства бывают физические и механические. В чем между ними разница? Физика ведь все объясняет, физика — это природа. Но есть очень простая градация. Физические свойства — это те, при измерении которых размеры и форма образца не изменяются, он не разрушается, не изгибается. А когда они изменяются, это механические свойства. Понятно, что эти свойства важны, хотя первым делом человечество использовало прочность и только потом стало использовать физические свойства, прежде всего электрические. Следующие важные свойства кроме электрических — магнитные свойства. Важным компонентом современной техники, электроники и приборостроения в целом являются магнитные материалы.

Металлы, как Ломоносов говорил, — «светлые тела, которые ковать можно». Их физические свойства определяются тем, что у них есть свободные электроны, между ними возникает металлическая связь. От этого металлы блестят, от этого они пластичны и хорошо проводят электрический ток, и, что очень важно, некоторые из них обладают очень интересными магнитными свойствами. Эти магнитные свойства во многом определяют лицо нашей электроники, приборостроения и электротехники. Электрический ток у нас в розетках получается преобразованием высокого напряжения в низкое — это достигается благодаря магнитным свойствам железа. Магнитные стрелки, компасы и магнитные ориентирующие приборы — все это основано на действии постоянного магнитного поля. И у магнитных свойств металлов есть две противоположности. Некоторые магнитные металлы очень легко перемагничиваются с частотой 50 герц или даже с частотой мегагерц — это особые материалы для перемагничивания, для преобразования электрических сигналов, это радиотехника. И вторые, которые, наоборот, никакими силами не перемагничиваются, постоянные магниты — это магнитные стрелки, определяющие очень многие электрические машины, электромоторы и генераторы.

Рекомендуем по этой теме:
7746
FAQ: Ядерный магнитный резонанс

А в последнее время, благодаря сильному повышению свойств этих материалов для постоянных магнитов, то есть повышению их сопротивления внешнему размагничивающему полю, удалось создать совершенно новые устройства. Самый яркий пример — это железная дорога на магнитной подвеске. Она стала возможна (хотя и довольно дорого стоит до сих пор), потому что эти вещества, которые обнаружили в 80-е годы XX века, сопротивляются внешнему магнитному полю.

Важнейшие магнитные материалы — это то, чем я занимался первую треть своей профессиональной деятельности, — это материалы для постоянных магнитов. Они известны очень давно, начиная с Древнего Китая. Обращаю ваше внимание, что обычно магниты по традиции рисуют в виде изогнутой подковы. Почему это так? Потому что у магнитной стрелки есть север и юг, силовые линии магнитного поля выходят из северного полюса, заходят в южный, и любой магнит находится под действием собственного размагничивающего поля.

До начала XX века магниты делались из стали, их делали обязательно длинными — магнитные стрелки были длинными, чтобы магнит сам себя не размагничивал. Чем длиннее магнит, тем слабее его размагничивающее поле, а еще лучше — загнуть в подкову, чтобы сблизить полюса. И когда открыли некоторые соединения редкоземельных металлов с железом и с кобальтом — это уже 80–90-е годы XX века, — тогда появились первые магниты, у которых полюса можно сближать. Были сделаны тонкопленочные магниты, когда север и юг очень близко.

И тогда появилась возможность сделать печатный плоский электродвигатель.

Такие электродвигатели были сделаны в нашей стране, длина электродвигателя была 2 миллиметра, а диаметр, по-моему, 2 сантиметра.

Это тот случай, когда, как по Гегелю, количество переходит в качество. Когда появились такие сильные магниты, которые почти невозможно размагнитить внешним полем, тогда можно сблизить полюса — они были так сближены, что получился плоский электродвигатель. Кроме того, электродвигатель может теперь быть не круглым, а линейным. Эта идея была высказана в 1940 году английским инженером Польгрином, но до сих пор реализована только в Шанхае. В Шанхае построили железную дорогу на магнитной подвеске, там, где рельсы сделаны из постоянных магнитов, которые смотрят северным полюсом в небо. Такие же магниты на нижней стороне вагона, которые севером смотрят вниз. На отталкивании висит вагон, который движется с огромной скоростью. И все совершенно справедливо восхищаются этим, что никакого трения нет, магнитная подвеска. Но мало кто обращает внимание, что это реализация линейного электромотора, что сам вагон является мотором. Под вагоном стоит такая медная толстая шина, к которой приложено постоянное небольшое электрическое напряжение. И, по известному со школы правилу правой руки, или правилу буравчика, магнитное поле направлено вверх, электрический ток течет под брюхом вагона поперек вагона, соответственно, возникает перпендикулярная сила, которая тащит вагон, вагон сам себя тащит. То есть надо просто пропускать электрический ток по этой медной шине, что и делается.

Можно сделать такие же маленькие линейные двигатели, которые будут бегать по микросхеме и ее переключать, и там не будет никаких подшипников — очень удобно управлять. К сожалению, в нашей стране по понятным причинам эти работы в свое время прекратились и теперь пока не возобновились. Но я это рассказываю для того, чтобы привлечь внимание к этим материалам. Их количество, которое выпускает в год весь мир, очень маленькое по сравнению со сталью, это в тысячу раз меньше, чем сталь по весу, но их значение огромно. Все стеклоподъемники в автомобиле и даже устройства для определения степени обжарки курицы в микроволновой печи — они все используют постоянные магниты. Это удивительный материал, созданный природой и использованный человеком, который создает магнитное поле в нужном месте. Например, магнитные карточки, магнитные билеты — это все магниты. Человечество хорошо их использует, но, по-видимому, использует еще очень мало, и все еще впереди — на это я хотел обратить внимание.

До 80-х годов XX века в качестве самых лучших магнитомягких материалов — тех, которые легко перемагничиваются, они ведь должны перемагничиваться на больших частотах: либо на промышленной частоте 50 герц, либо на радиочастоте, а это кило- и мегагерцы, — использовались сплавы железа с никелем. Но у них есть серьезный недостаток: они очень нежные, буквально нежные, очень мягкие сами по себе. Их магнитные свойства очень легко испортить: если уронить магнитный сердечник на пол, даже на деревянный пол или ковер, он уже испортится. Исправить его очень трудно: его нужно очень долго нагревать при высокой температуре, целую неделю.

И вот в 80-е годы XX века нашли такие материалы — ферромагнитные, которые удивительным образом сочетают в себе свойства магнитной мягкости (то есть могут перемагничиваться при частотах внешнего поля мегагерц и при радиочастотах) и механические свойства высокопрочных сталей: их сломать вообще невозможно. Они на основе железа, называются они металлические стекла — такое необычное сочетание. Они непрозрачные, выглядят как хороший металл, очень хорошо блестят — ржавеют они очень плохо, поэтому блестят. Но у них нет кристаллической решетки, поэтому их назвали металлическими стеклами. Они получаются очень простым способом — закалкой металлической жидкости. Расплав сплава на основе железа или кобальта выливают на быстро вращающийся медный барабан, и получается ленточка, которая имеет высокую прочность и, самое главное, высокие магнитные свойства.

Вся современная электроника как раз на металлических стеклах, на этих ленточках. Это одно из достижений конца XX века, которое сейчас широко используется, и оно продолжает развиваться. Это уникальное сочетание высокой прочности механической и низкой прочности магнитной, способность перемагничиваться, наблюдается только в металлических стеклах. Но они непрозрачны — стекла они по принципу устройства структуры, все свойства определяются строением структуры. И там, конечно, до сих пор очень много непонятного, потому что пока люди считают, что жидкость не упорядочена — тогда откуда у этих стекол магнитный порядок? (А магнитные они потому, что имеют магнитный порядок.) Но, скорее всего, там есть дальний порядок, но не кристаллографический. Скорее всего, эти материалы состоят из длинных полимерных ниточек металлических атомов, так же как в ДНК или в жидких кристаллах.