В настоящее время уже не только физики-ядерщики поняли, что ядерная энергия — источник энергии, который открывает принципиально новые возможности и новые проблемы развития человечества. Более 60 лет назад в своем докладе Конгрессу США Энрико Ферми писал, что ядерная энергетика (nuclear energy) — это новый источник, который, если использовать его правильно, на основе реакторов-бридеров на быстрых нейтронах (БР), то есть реакторов, которые производят топлива больше, чем сжигают (неслучайно французы называют их «Фениксами»), позволит создать практически чистый и неограниченный по масштабам развития источник энергии. Например, одна 1000-мегаваттная угольная станция требует в день 7 эшелонов угля, такой же 1000-мегаваттный реактор требует в год один вагон. Вагон и эти эшелоны, миллионы тонн — это и есть отходы. Все отходы атомной станции, которые сейчас есть в мире, можно собрать на одном стадионе, это будет куб 50×50×50 м.

1

Природные запасы урана и тория — сырье для ядерного топлива бридеров — достаточны для энергетического развития нашей планеты на сотни лет.

Но оказывается, это плюсы, которые сопровождают минусы. Ядерная энергетика позволяет собрать все радиоактивные отходы в одном месте, но никто не хочет предоставлять территорию для захоронения. Единственные две страны, которые определились, что они под морским дном в гранитном поясе делают вечное хранилище, — это Швеция и Финляндия. Эти страны выбрали путь вечного хранилища, хотя с самого начала атомщики открыли, что можно перерабатывать топливо, выделять вторичный элемент, который и является смыслом развития атомной энергетики. Дело в том, что в природном уране только 0,7% урана-235, делящегося элемента, который может служить и для бомб, и запалом для реактора. Остальные 99,3% — это сырьевой уран-238. На нем нельзя создать критический реактор или сделать бомбу, но, если в нем поглощается нейтрон, образуется плутоний — еще более перспективный изотоп и для бомбы, и для энергетики. Реакторы, которые задумывались как будущее энергетики, — это реакторы-размножители (бридеры, разновидность реакторов на быстрых нейтронах).

Рекомендуем по этой теме:
13210
FAQ: Мирный атом

Единственный реактор на быстрых нейтронах на сегодняшний день в России работает на Белоярской станции (строится еще один), но, к сожалению, они работают на урановом топливе. В 90-е годы работа по их разработке и строительству была приостановлена. Сейчас мы возвращаемся к реализации этой программы, как, например, и Индия, которая в конце 2013 года должна пустить быстрый реактор — бридер на плутонии — и начинает строить серию таких же реакторов.

2

Есть и другая сторона этой проблемы: если ядерная страна захочет сказать «я больше не использую ядерную энергетику», то это принципиально невозможно. Нельзя подойти к атомной станции, закрыть ее на ключ и сказать, что ее больше нет. У нее есть, во-первых, остаточное тепловыделение, которое надо снимать, есть ОЯТ — отработанное ядерное топливо, содержащее продукты деления, это радиоактивные отходы, есть плутоний, который надо хранить миллионы лет, если у вас нет реактора, или сжигать как самое привлекательное топливо в реакторе на быстрых нейтронах. Ядерная технология — единственно реальная возможность избавиться в будущем от долгоживущего радиоактивного наследства ее развития, в том числе наследства оборонного.

Если мы остаемся в развитии ядерной энергетики на реакторах существующего поколения, то у нас запасов урана-235 меньше, чем нефти, в 2–3 раза. Если мы строим реакторы на быстрых нейтронах, то это неограниченный источник энергии. Но кроме быстрого реактора нужно еще замкнуть топливный цикл, топливо, выгружаемое из реактора, надо перерабатывать и повторно использовать. Такие технологии применяются во Франции. (Сейчас, после вывода из эксплуатации своих первых реакторов на быстрых нейтронах PHENIX и SUPER-PHENIX, они продолжают использовать плутоний только в виде уран-плутониевого топлива в реакторах на тепловых нейтронах. Это малоэффективно.)

3

Соединенные Штаты были пионерами в этой области, уже в 1946 году у них работал первый быстрый реактор, в 1951 году они получили первое «ядерное» электричество на быстром реакторе EBR-1 и продемонстрировали возможность накопить плутония больше, чем сжечь.

На реакторе EBR-2 в 1968 году они продемонстрировали замкнутый ядерный топливный цикл. Но потом администрация США решила, что БР — это слишком опасный источник плутония «оружейного» качества для распространения, и программа БР в США была закрыта. Сейчас, через 30 лет, когда мы столкнулись с проблемой ресурсов в ядерной энергетике, международное сообщество организовало международный проект GIF (Generation IV International Forum) для выработки типов реакторов, которые спасут ядерную энергетику, вернутся к ее истокам и воплотят идеи пионеров. Международным сообществом были отобраны шесть лучших типов реакторов, четыре из них — реакторы на быстрых нейтронах, в том числе тот, который работает у нас, типа БН.

4

Сегодня Соединенные Штаты понимают, что без быстрых реакторов нет будущего у ядерной энергетики, но эта страна утратила научную школу БР. В России это направление исследований сохранилось, и строительство реактора БН-800 — это лучший способ сохранить школу БР. Китай покупает реакторы у нас, Индия самостоятельно развивается, Франция, после того как они остановили свой реактор SUPER-PHENIX под давлением «зеленого» правительства, закрыли разработки, а сейчас пытаются возобновить. Появляются альтернативные направления. Но, так или иначе, остается проблема: быстрый реактор — лучший наработчик оружейного плутония. Замкнутый топливный цикл предусматривает переработку отработанного топлива, чтобы извлечь и то, что является наиболее полезным (плутоний и другие актиноиды), и то, что является наиболее вредным (продукты деления), то есть при существующей сейчас технологии переработки это может создать риск распространения. С увеличением масштабов энергетики увеличивается оборот топливного цикла, перевозки, персонал, распространение знаний. Все ли страны имеют право развивать у себя такую ядерную промышленность, развивать такую технологию?

Рекомендуем по этой теме:
5996
Атомная энергетика сегодня
5

Во время последних событий в Японии — аварии на АЭС Фукусима-1 — произошла тяжелая авария на четырех реакторах и на трех хранилищах — семь тяжелых аварий одновременно. А мы считали, что после Чернобыля наша ядерная энергетика станет практически безопасна. Более безопасны новые реакторы, которые разрабатываются, но из 440 реакторов, которые работают, 60% построены до Чернобыля. Они усовершенствованы, они улучшены, но это реакторы старого типа.

Например, реакторы типа РБМК не защищены от последствий аварии, на любом реакторе возможна авария, и заявления о сверхбезопасных реакторах — это блеф. Безопасным является тот реактор, на котором, если произойдет авария, отрицательных последствий для населения не будет, и такие реакторы сейчас разрабатываются. Для Китая и Индии, где есть только уголь, нет нефти и газа, ядерная энергетика — единственный способ спасения. И Китай делает прорыв: до сих пор в Китае строили только проверенные реакторы, например ВВЭР-1000, теперь они строят реакторы, которые нигде еще не работают, инновационные (АР-1000 Вестингауз и EPR, французской «Аревы» — это новые реакторы, III+ поколения, подготовка к IV поколению).

К шести реакторам будущего (GIF-4) кроме быстрых реакторов относятся и сверхвысокотемпературные реакторы, которые позволят нарабатывать искусственное топливо. И водо-водяные реакторы с «закритическими» параметрами (то есть с КПД на уровне современной энергетики на органическом топливе — до 45%).

В сочетании с быстрыми реакторами такая многокомпонентная ядерная энергетика может стать основой нашей энергетической безопасности. Вопрос о том, как реализовать БР и замкнутый ЯТЦ, сохранив режим нераспространения.

6

Решение этой проблемы ищется на различных путях, для этого в том числе в 1957 году было создано МАГАТЭ (Международное агентство по атомной энергии). Инспекторы МАГАТЭ сейчас с введением Дополнительного протокола (после 1993 года) могут поехать и проверить, что происходит в той или иной стране, взять пробы. Это введение более строгого режима контроля. Развивается институционный режим, новые организационные меры.

Необходимо технологически и технически разрабатывать методы, не допускающие «утечку чувствительных» материалов (если не будет чистого плутония, а будет плутоний в смеси с изотопами актиноидами, его нельзя использовать для бомбы). Если избавиться от обогащения — а быстрый реактор не требует обогащения, — тогда человечество сможет выступить с идеей безопасности с точки зрения распространения ядерной энергетики. На Саммите Тысячелетия ООН в 2000 году наша страна выступила с инициативой: ядерная энергетика без обогащения, без свободного плутония как основа стабильного энергетического развития мира.

Пример решения проблемы есть и в нашей истории: Советский Союз организовал региональный ядерный топливный цикл — разрабатывал реакторы, производил топливо, перерабатывал его. Страны Восточной Европы получали атомные станции, но топливным циклом не занимались, все опасные отходы и все плутониевое топливо возвращалось в СССР. Страны получили новый эффективный источник энергии, но все «чувствительные» материалы, технологии и знания оставались в пределах и под контролем «ядерной» державы — СССР.

7

Таким образом, создание международного режима требует создания региональных (международных) центров ядерного топливного цикла. Например, международные Центры ядерного обогащения, как и Центры переработки ОЯТ и Центры БР, должны быть созданы и работать под международным контролем. В одиночку ни одна страна, даже из «великих» держав, не сумела до сих пор создать коммерческую АЭС с быстрым реактором — бридером, работающим в замкнутом ЯТЦ.

Но необходимо пройти этот длинный и трудный путь развития международного сотрудничества в области мирного использования ядерных технологий — слишком большое значение имеет ядерная технология для экономики и безопасности стран, ее освоивших.

Первые шаги уже делаются — эта идея развивается в МАГАТЭ в рамках нового международного проекта ИНПРО, созданного по инициативе нашей страны. Начата реализация идеи создания Международного центра ядерного обогащения на базе Ангарского комбината.